Back to Kemp Acoustics Home next up previous contents
Next: About this document ... Up: thesis Previous: Inductance method   Contents

Bibliography

1
D. M. Campbell and C. A. Greated.
The musician's guide to acoustics.
Dent, 1987.

2
D. M. Campbell.
Nonlinear dynamics of musical reed and brass wind instruments.
Contemporary Physics, 40(6):415-431, 1999.

3
J. Backus.
Input impedance curves for the reed woodwind instruments.
J. Acoust. Soc. Am., 56(4):1266-1279, 1974.

4
J. Backus.
Acoustic impedance of an annular capillary.
J. Acoust. Soc. Am., 58(5):1078-1081, 1975.

5
J. Backus.
Input impedance curves for the brass instruments.
J. Acoust. Soc. Am., 60(2):470-480, 1976.

6
D. B. Sharp.
Acoustic pulse reflectometry for the measurement of musical wind instruments.
PhD thesis, University of Edinburgh, 1996.

7
J. A. Ware and K. Aki.
Continuous and discrete inverse scattering problems in a stratified elastic medium. i: Planes at normal incidence.
J. Acoust. Soc. Am., 45(4):911-921, 1969.

8
M. M. Sondhi and B. Gopinath.
Determination of vocal-tract shape from impulse response at the lips.
J. Acoust. Soc. Am., 49(6):1867-1873, 1971.

9
M. M. Sondhi and J. R. Resnick.
The inverse problem for the vocal tract: numerical methods, acoustical experiments and speech synthesis.
J. Acoust. Soc. Am., 73(3):985-1002, 1983.

10
A. C. Jackson, J. P. Butler, E. J. Millet, F. G. Hoppin, and S. V. Dawson.
Airway geometry by analysis of acoustic pulse response measurements.
J. Appl. Physiol., 43(3):523-536, 1977.

11
A. C. Jackson and D. E. Olsen.
Comparison of direct and acoustical area measurements in physical models of human central airways.
J. Appl. Physiol., 48(5):896-902, 1980.

12
J. J. Fredberg, M. E. B. Wohl, G. M. Glass, and H. L. Dorkin.
Airway area by acoustic reflections measured at the mouth.
J. Appl. Physiol., 48(5):749-758, 1980.

13
L. J. Brooks, R. G. Castile, G. M. Glass, and N. T. Griscom.
Reproducibility and accuracy of airway area by acoustic reflection.
J. Appl. Physiol., 57(3):777-787, 1984.

14
A. H. Benade and J. H. Smith.
Brass wind instrument impulse response measurements.
J. Acoust. Soc. Am., 70:S22, 1981.

15
R. A. Smith.
It's all in the bore!
Journal of the International Trumpeters Guild, 12:42-45, 1988.

16
A. P. Watson and J. M. Bowsher.
Impulse measurements on brass musical instruments.
Acustica, 66:170-174, 1988.

17
N. Amir, G. Rosenhouse, and U. Shimony.
A discrete model for tubular acoustic systems with varying cross section - the direct and inverse problems. parts 1 and 2: Theory and experiment.
Acustica, 81:450-474, 1995.

18
N. Amir, G. Rosenhouse, and U. Shimony.
Losses in tubular acoustic systems - theory and experiment in the sampled time and frequency domains.
Acustica, 82:1-8, 1996.

19
D. B. Sharp and D. M. Campbell.
Leak detection in pipes using acoustic pulse reflectometry.
Acustica, 83:560-566, 1997.

20
D. B. Sharp, A. Myers, R. Parks, and D. M. Campbell.
Bore reconstruction by pulse reflectometry and its potential for the taxonomy of brass instruments.
In Proc. 15th International Congress on Acoustics, Trondheim, Norway, pages 481-484, 1995.

21
A. H. Benade and E. V. Jansson.
On plane and spherical waves in horns with nonuniform flare. 1. theory of radiation, resonance frequencies, and mode conversion.
Acustica, 31:79-98, 1974.

22
P. M. Morse and K. U. Ingard.
Theoretical Acoustics.
McGraw-Hill, 1st edition, 1968.

23
E. Eisner.
Complete solution of the webster horn equation.
J. Acoust. Soc. Am., 41(4):1126-1146, 1967.

24
G. R. Putland.
Every one-parameter acoustic field obeys webster's horn equation.
J. Audio Eng. Soc., 41(6):435-451, 1993.

25
J. W. Miles.
The reflection of sound due to a change in cross section of a circular tube.
J. Acoust. Soc. Am., 16(1):14-19, 1944.

26
J. W. Miles.
The analysis of plane discontinuities in cylindrical tubes. part 1.
J. Acoust. Soc. Am., 17(3):259-271, 1946.

27
J. W. Miles.
The analysis of plane discontinuities in cylindrical tubes. part 2.
J. Acoust. Soc. Am., 17(3):272-284, 1946.

28
A. F. Stevenson.
Exact and approximate equations for wave propagation in acoustic horn.
Journal of Applied Physics, 22(12):1461-1463, 1951.

29
A. F. Stevenson.
General theory of electromagnetic horns.
Journal of Applied Physics, 22(12):1447-1460, 1951.

30
R. J. Alfredson.
The propagation of sound in a circular duct of continuously varying cross-sectional area.
Journal of Sound and Vibration, 23(4):433-442, 1972.

31
S. Oie, R. Takeuchi, and T. Shindo.
Sound radiation from a concave radiator in an infinite baffle.
Acustica, 46:268-275, 1980.

32
V. Pagneux, N. Amir, and J. Kergomard.
A study of wave propagation in varying cross-section waveguides by modal decomposition. part 1. theory and validation.
J. Acoust. Soc. Am., 100(4):2034-2048, 1996.

33
N. Amir, V. Pagneux, and J. Kergomard.
A study of wave propagation in varying cross-section waveguides by modal decomposition. part 2. results.
J. Acoust. Soc. Am., 101(5):2504-2517, 1997.

34
H. Levine and J. Schwinger.
On the radiation of sound from an unflanged circular pipe.
Physical review, 73(4):383-406, 1948.

35
Y. Ando.
On the sound radiation from semi-infinite circular pipe of certain wall thickness.
Acustica, 22:219-225, 1969-1970.

36
Y. Ando and T. Koizumi.
Sound radiation from a semi-infinite circular pipe having an arbitrary profile of orifice.
J. Acoust. Soc. Am., 59(5):1033-1039, 1976.

37
W. E. Zorumski.
Generalized radiation impedances and reflection coefficients of circular and annular ducts.
J. Acoust. Soc. Am., 54(6):1667-1673, 1973.

38
J. A. Kemp, N. Amir, and D. M. Campbell.
Calculation of input impedance including higher modes.
In Proc. 5th French Congress on Acoustics, Laussane, Switzerland, pages 314-317, 2000.

39
J. A. Kemp, D. M. Campbell, and N. Amir.
Multimodal radiation impedance of a rectangular duct terminated in an infinite baffle.
Acustica, 87:11-15, 2001.

40
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders.
Fundamentals of acoustics.
Wiley, 3rd edition, 1982.

41
J. A. Kemp, N. Amir, D. M. Campbell, and M. van Walstijn.
Multimodal propagation in acoustic horns.
In Proc. International Symposium on Musical Acoustics (ISMA), Perugia, Italy, pages 521-524, 2001.

42
J. Kergomard.
Calculation of discontinuities in waveguides using mode-matching method: an alternative to the scattering matrix approach.
J. Acoustique, 4:111-138, 1991.

43
K. F. Riley, M. P. Hobson, and S. J. Bence.
Mathematical methods for physics and engineering.
Cambridge University Press, 1st edition, 1998.

44
A. M. Bruneau, M. Bruneau, Ph. Herzog, and J. Kergomard.
Boundary layer attenuation of higher order modes in waveguides.
Journal of Sound and Vibration, 119(1):15-27, 1987.

45
N. H. Fletcher and T. D. Rossing.
The physics of musical instruments.
Springer, 1st edition, 1991.

46
Lord Rayleigh.
Theory of sound.
Macmillan, 1940.

47
J. Lee and I. Seo.
Radiation impedance computations of a square piston in a rigid infinite baffle.
Journal of Sound and Vibration, 198(3):299-312, 1996.

48
D. S. Burnett and W. W. Soroka.
Tables of rectangular piston radiation impedance functions, with application to sound transmission loss through deep apertures.
J. Acoust. Soc. Am., 51(2):1618-1623, 1972.

49
Jr. G. W. Swenson and W. E. Johnson.
Radiation impedance of a rigid square piston in an infinite baffle.
J. Acoust. Soc. Am., 24(1):84, 1952.

50
E. M. Arase.
Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle.
J. Acoust. Soc. Am., 36(8):1521-1525, 1964.

51
H. Levine.
On the radiation impedance of a rectangular piston.
Journal of Sound and Vibration, 89(4):447-455, 1983.

52
G. N. Watson.
A treatise on the theory of Bessel functions.
Cambridge University Press, 2nd edition, 1962.

53
H. Nelisse, O. Beslin, and J. Nicolas.
A generalised approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy fluid.
Journal of sound and vibration, 211(2):207-225, 1998.

54
D. H. Keefe.
Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions.
J. Acoust. Soc. Am., 75(1):58-62, 1984.

55
E. Kreyszig.
Advanced engineering mathematics.
Wiley, 7th edition, 1993.

56
J. M. Buick, J. A. Kemp, D. B. Sharp, M. van Walstijn, D. M. Campbell, and R. A. Smith.
Distinguishing between similar tubular objects using pulse reflectometry: a study of trumpet and cornet leadpipes.
Measurement Science Technology, 13:750-757, 2002.

57
J. Kergomard and A. Garcia.
Simple discontinuities in acoustical waveguides at low frequencies: critical analysis and formulae.
Journal of Sound and Vibration, 114(3):465-479, 1987.

58
M. M. Boone, G. Janssen, and M. van Overbeek.
Modal superposition in the time domain: Theory and experimental results.
J. Acoust. Soc. Am., 97(1):92-97, 1995.

59
F. de Coulon.
Signal theory and processing.
Artech House Inc., 1st edition, 1986.

60
M. van Walstijn, J. A. Kemp, N. Amir, and D. M. Campbell.
Acoustic bore reconstruction using the layer-peeling algorithm: signal processing aspects and future development involving the inclusion of higher modes.
In Proc. 17th International Congress on Acoustics, Rome, Italy, 2001.

61
W. Kausel.
Bore reconstruction from measured acoustical input impedance; equipment, signal processing, algorithms and prerequisites.
In Proc. International Symposium on Musical Acoustics (ISMA), Perugia, Italy, pages 373-378, 2001.

62
J. A. Kemp, J. M. Buick, and D. M. Campbell.
Practical improvements to acoustic pulse reflectometry: the virtual dc tube method and source reflection cancellation.
In Proc. International Symposium on Musical Acoustics (ISMA), Perugia, Italy, pages 387-390, 2001.

63
B. Louis, G. Glass, B. Kresen, and J. Fredberg.
Airway area by acoustic reflection: the two-microphone method.
Journal of Biomechanical Engineering, 115:278-285, 1993.

64
D. B. Sharp.
Increasing the length of tubular objects that can be measured using acoustic pulse reflectometry.
Measurement Science Technology, 9:1469-1479, 1998.

65
K. C. Hsu.
Simulation of room acoustics.
Undergraduate thesis, University of Queensland, Australia, 1996.
(Downloadable from website http://www.elec.uq.edu.au/$\sim$marks/thesis/thesis96/hsu/).

66
M. R. Schroeder.
Integrating-impulse method measuring sound decay without using impulses.
J. Acoust. Soc. Am., 66(2):497-500, 1979.

67
W. T. Chu.
Impulse-response and reverberation-decay measurements made by using a periodic pseudorandom sequence.
Applied Acoustics, 29:193-205, 1990.

68
F. J. MacWilliams and N. J. A. Sloane.
Pseudo-random sequences and arrays.
Proceedings of the IEEE, 64(12):1715-1729, 1976.

69
W. Stahnke.
Primitive binary polynomials.
Mathematics of Computation, 27:977-980, 1973.

70
J. Borish and J. B. Angell.
An efficient algorithm for measuring the impulse response using pseudorandom noise.
Journal of the Audio Engineering Society, 31(7):478-487, 1983.

71
M. van Walstijn and D. M. Campbell.
Large-bandwidth measurement of acoustic input impedance of tubular objects.
In Proc. Institute of Acoustics Spring Conference, Salford, UK, 2002.

72
B. J. Forbes, D. B. Sharp, and J. A. Kemp.
Acoustic pulse reflectometry: singular system analysis and regularisation of the inverse problem.
In Proc. Institute of Acoustics Spring Conference, Salford, UK, 2002.

73
E. Jahnke and F. Emde.
Tables of functions with formulae and curves.
Dover, 4th edition, 1945.



Jonathan Kemp 2003-03-24