
INTRODUCTION TO MATLAB (OR OCTAVE) BY
APPLICATION TO MUSICAL ACOUSTICS

c© JONATHAN A. KEMP 2012

University of St Andrews, Beethoven Lodge, 65 North Street, St Andrews, Fife,
KY16 9AJ, UK

Introduction to MALTAB (or Octave) by application to musical acoustics by Dr
Jonathan A. Kemp is licensed under a Creative Commons Attribution-ShareAlike
3.0 Unported License. Based on a work at http://www.kempacoustics.com/
Introduction to MATLAB files/IntroductiontoMATLAB.pdf.

Contents

Introduction 2
1. The Basics: MATLAB as a calculator 3
1.1. Example: Using the speed of sound 4
Exercises 1 4
1.2. Brackets 4
1.3. Using sqrt, the built in function for square roots 5
2. Storing numbers: Variables 6
3. Script files 7
3.1. Files and folders (or directories) 8
3.2. Semicolons to prevent printing results on the screen 9
3.3. Commenting code 9
4. Using sin, cos and tan, the built in functions for trigonometry 10
4.1. Example: Diffraction for stereo loudspeakers 10
Exercises 4 11
5. Vectors 11
5.1. Guitar string fundamental mode shape 12
5.2. Using the colon character for specifying ranges within vectors 12
6. Mode shapes for guitar string harmonics 14
Exercises 5 14

E-mail address: jk50@st-andrews.ac.uk.
Date: August 28, 2012.

1

http://www.kempacoustics.com/Introduction_to_MATLAB.html
http://www.kempacoustics.com/Introduction_to_MATLAB.html
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.kempacoustics.com/Introduction_to_MATLAB_files/IntroductiontoMATLAB.pdf
http://www.kempacoustics.com/Introduction_to_MATLAB_files/IntroductiontoMATLAB.pdf
mailto:jk50@st-andrews.ac.uk


2 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

7. Row vectors, column vectors, and matrices 15
Exercises 7 17
8. Frequency 17
8.1. Sampling frequency 17
8.2. Making a sine wave plot 18
8.3. Making a sine wave sound 18
Exercises 8 19
8.4. Making a function 19
8.5. Clipping 21
8.6. Using the fft command for Fourier transforms 22
Exercises 8 continued 23
9. Wavelength 23
9.1. Travelling waves, standing waves and reflection 24
9.2. The frequencies of the modes of a string with fixed ends 24
9.3. Waves in pipes 25
9.4. Using a for loop to show travelling waves 26
Exercises 9 continued 27
10. Class, strings and measurements 27
11. Answers 29
Answers to Selected Exercises 29

Introduction

MATLAB is a computer program that lets you calculate things in a way that
is very intuitive. You can use it as a simple calculator, but the best thing about
MATLAB is the fact that you can start without knowing any computer program-
ming techniques and in no time you will be writing programs to do numerical
computation. All computer-programming languages involve learning some fiddly
commands, but MATLAB keeps this to the absolute minimum, meaning that you
have more time for trying out different ideas.

While MATLAB is a commercial piece of software, Octave is a free competitor
featuring much of the same functionality. In this work the commands described
can be applied successfully in both MATLAB and Octave. If you download and
install Octave, just pretend the word MATLAB is replaced with Octave for the
remainder of the work unless you are told otherwise.

Why is everything not written in MATLAB? The simple answer is that more
traditional programming languages, such as C, C++, Java and so on may be
optimized to run complicated tasks faster once a program has been written. If you
are beginning a project and want to maximize the time spent doing things that
get you results that can be put into a report, though, then MATLAB is for you.



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 3

This work assumes a basic working knowledge of high school mathematics but
nothing more and acts as an introduction to computer programming by illustrat-
ing how it could be used to create results for a project report. In particular, the
field of Musical Acoustics is used as an example wherever possible. This area has
the advantages of being scientifically interesting and relatively cheap to run ex-
periments in. Computer programming, mathematics and music (as well as physics
and digital signal processing) are all topics that will seem more accessible through
working through this booklet.

1. The Basics: MATLAB as a calculator

Lets begin by opening MATLAB or Octave and considering it to be a glorified
calculator. You will see the command prompt which looks like:

>>

in MATLAB or

octave-3.2.3:1>

in Octave. I will show commands that should be typed into the command line
with

>>

in front but all should work on Octave as well as on MATLAB. Try typing 1+1
into the command prompt and hitting return. We should see:

>>1+1

ans = 2

As well as addition using +, we can do subtraction using −, multiplication using
∗, division using / and to the order of usingˆ(which may be obtained using Shift
6 on the computer keyboard).

Try typing the following text just after the command prompt and check you get
the same answers:

>>9 - 6

ans = 3

>>3 * 2

ans = 6

>> 28/4

ans = 7

>>2^3

ans = 8



4 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

1.1. Example: Using the speed of sound. As an example of practical interest
lets think about sound travelling through the air. A drummer, standing 85 metres
away, beats a drum. How long after we see the drummer’s stick striking the drum
do we hear the beat?

We will assume here that the speed of sound is c = 340 m/s (although in real
life it depends on the temperature and humidity etc.). Assuming that light travels
instantly, we can work out t, the time taken for the sound to travel using:

(1) t =
d

c

where d = 85m is the distance between us and the drummer. In MATLAB can
put in the numbers and do the calculator work in the command line using:

>> 85/340

ans = 0.2500

Note that, as with a calculator, there are no units shown in MATLAB. On paper
we would write the answer as:

t =
d

c
=

85

340
= 0.25s

This means that it takes 0.25 seconds, or a quarter of a second, for sound to travel
from the drum to us. We hear the beat a quarter of a second after we see the
drummer strike the drum.

Exercises 1. 1.1). We are standing 34 m from the flat wall of a castle and we
sing a brief note. How long after we start the sound do we hear the echo? You
should assume that the speed of sound is 340 m/s. Hint: Consider how sound has
to travel from us the the castle and back again.

1.2). We see a guitarist strumming a chord and hear the chord 0.3 seconds later.
How far away is the guitarist? Hint: Rearrange equation (1).

1.3). A gong is sitting against one wall of a corridor. When the gong is struck
echoes are heard repeating 180 times a second. How far apart are the walls? Hint:
The time taken for echoes in seconds must be 1 divided by the number of echoes
per second.

1.4). An echo unit works by recording a sound on magnetic tape at one location
and then playing it back at another location, 5 cm away. If the magnetic tape
travels at a speed of 2.5 cm/s, how long will it take for echoes to appear? Hint:
Use the speed that the tape is moving at instead of the speed of sound in air.

1.2. Brackets. You can also use brackets. The commands are interpreted in the
usual way for mathematics which may be remembered using the mnemonic BOD-
MAS (calculations inside Brackets are calculated first, to the Order of command
are calculated next, followed by Division and Multiplication, then followed by
Addition and Subtraction).

As an example try:



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 5

>>(80 + 18)/(2*3 + 1)^2

ans = 2

which is the same as:

>>98/(7^2)

ans = 2

This would mean we could calculate the answer to Exercise 1.1 above using

>>(34+34)/340

ans = 0.2000

to give us the answer of 0.2 s.

1.3. Using sqrt, the built in function for square roots . MATLAB features
a large number of built in functions. Our first example of a function is called ”sqrt”
and calculates the square root of a number. As an example try the following:

>> sqrt(9)

ans = 3

Note that we have to put in the brackets around the number that we are taking
the square root of and ”sqrt 9” without the brackets gives an error message.

Square roots can be used where we have to work out distances involving mea-
surements taken at right angles using Pythagorus’ Theorem. For instance, if a
choir is standing in a rectangular grid of four rows, each of 6 singers, how long
does sound take to travel between the the furthest away choir members? Let’s
assume that the singers are separated by 70 cm from nearest neighbours in both
the sideways and forwards directions. The distances along the along the rows and
front to back can be worked out in meters using:

>> 4*0.7

ans = 2.8000

>> 6*0.7

ans = 4.2000

giving 2.8 m and 4.2 m respectively. We apply Pythagorus’ Theorem to give the
distance between furthest performers as:

sqrt(2.8^2 + 4.2^2)

ans = 5.0478

so rough 5.05 m. In order to calculate the time taken we have to take this number
and divide it by the speed of sound as in equation (1). Rather than typing out
the answer again, we can type ”ans” in its place to give:

>> ans/340

ans = 0.0148

So the sound takes just less than 0.015 s or 15 milliseconds to travel between
the furthest members of the choir. Musical ensembles of this size and bigger will



6 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

usually have a conductor beating time and part of the reason is to prevent timing
differences between performers becoming noticeable.

2. Storing numbers: Variables

It is often useful to store number for use later. We have already taken advantage
of number storage in MATLAB because when we use MATLAB as a calculator
the answer can be reused using by typing ”ans”. In computer programming termi-
nology we would say that when we use MATLAB as a calculator, it automatically
creates a variable called ”ans”. Variables let us store numbers within computer
programs and it is possible to assign number to letters in using the equals sign in
a similar way to the use of letters in algebra.

In mathematics the quantity on the left of the equals sign and the quantity on
the right of the equals sign must be the same. The left hand side and the right
hand side may be swapped over without changing the meaning of an equation.
Equals signs in computer programming are subtly different in that the item on the
left hand side of an equals sign is set to contain the value calculated on the right
hand side when the line is computed. In order to see how this works lets store the
speed of sound in a variable name called c by typing c = 340 into the command
line and hitting return. This results in the display showing:

>> c = 340

c = 340

We could also have a calculation done on the right hand side and a variable name
on the left of the equals sign. For instance, to assign the distance calculation in
section 1.3 to a variable called d we would type d = then the calculation to give:

>> d = sqrt(2.8^2 + 4.2^2)

d = 5.0478

and check what variables we have stored by typing the command ”who” and press-
ing enter. You should see something along the lines of:

>> who

Your variables are:

ans c d

showing that c and d are variables that have been defined. In Octave the text
says ”Variables in the current scope” rather than ”Your variables are” but the
command and the results are identical otherwise. We can then work out the time
taken and store it is a variable called t by dividing the variables we have defined
earlier by entering:

>> t = d/c

t = 0.0148

If we wish to remove all the variables we have stored in memory then we can do
this using the clear command:



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 7

>> who

Your variables are:

ans c d t

>> clear

>> who

After the clear command has been entered there are no variables left and the who
command doesn’t return us any text.

3. Script files

So far we have entered MATLAB commands one at a time using the command
line. MATLAB can also run commands stored in separate files called script files.
These files contain the text for the commands you wish to run and should be saved
with a name ending in ”.m” (for instance ”myscript.m”).

If you are using MATLAB then we can begin writing a script file simply by
typing ”edit” and pressing return (don’t include the quotation marks). This makes
MATLAB’s built in text editor pop up. In Octave it may be necessary to use open
a separate text editing program (many free ones are available).

After opening the editor, enter the commands:

clear

c = 340

d = sqrt(2.8^2 + 4.2^2)

t = d/c

into a new empty text document and save the file, with file being named ”myscript.m”
(again, don’t include the quotation marks). Note that it is helpful to make your
file names quite specific so that they don’t clash with an existing functions built
in to MATLAB (i.e. don’t name it sqrt.m).

Now go back to the command line and type ”ls” (which is short for list the con-
tents of the current folder). If you have saved the file myscript.m in the appropriate
place then the output should be:

>> ls

myscript.m

Type ”myscript” into the command line (making sure you don’t include the
quotation marks or the ”.m” on the end of the file name). The command line
should then read:

>> myscript

c = 340

d = 5.0478

t = 0.0148

If you achieve this then well done, you have successfully run your first script file.
Note that the command line output doesn’t show the ”sqrt” command that was
used to compute the value of d, just the numerical result.



8 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

3.1. Files and folders (or directories). If there has been a problem running a
script file because you are not in the correct folder or the file name is wrong then
you will see an error message along the lines of:

>> myscript

??? Undefined function or variable ’myscript’.

if you are using MATLAB or

octave-3.2.3:10> myscript

error: ‘myscript’ undefined near line 10 column 1

if you are using Octave. Type ”pwd” then enter and we should see something
along the lines of:

>> pwd

ans = /Users/Jonathan/Documents/MATLAB

for the user called Jonathan on a Mac OS X computer, but the answer will of
course depend on you and your system. The way to remember the command
”pwd” is by remembering the acronym ”Present Working Directory” where the
word ”directory” just means ”folder”. If, on the other hand, we know that we
have stored the myscript.m file in ”/Users/Jonathan/Documents/MATLAB” and
the ”pwd” command actually returns:

>> pwd

ans = /Users/Jonathan

then we know we need to change folders. This can be done using the ”cd” command
(where ”cd” stands for ”change directory”) as follows:

>> pwd

ans = /Users/Jonathan

>> cd Documents/MATLAB

>> pwd

ans = /Users/Jonathan/Documents/MATLAB

or you can specify the full name of the folders. On a Windows computer this may
be done with something along the lines of:

>> cd C:/Users/Jonathan/Documents/MATLAB

ans = C:/Users/Jonathan/Documents/MATLAB

where the ”C:” is used by Windows as the ”drive letter” for the hard drive used
to store the data.

If you need to get out of a folder we can type ”cd ..” and press enter (which is
known as changing directory to go into the ”parent” directory) and if you want to
go back to the directory that you started with just type ”cd” and press enter (this
is known as going to the home directory). If, on the other hand you are not sure
where you saved the file ”myscript.m” then go back to the editor and try selecting
”Save As...” from the File menu. The main thing is that typing ”myscript” into



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 9

the command line should work if the file ”myscript.m” is in the present working
directory.

3.2. Semicolons to prevent printing results on the screen. In computer
programs we often want to make calculations several lines of computation happen
to arrive at a single answer. In this case we don’t want every line printing results
on the screen. We can do this by typing the semicolon character ”;” at the end of
every line where we wish to hide the output. As an example, change the contents
of myscript.m to be:

clear

c = 340;

d = sqrt(2.8^2 + 4.2^2);

t = d/c

Typing myscript into the command line will now give:

>> myscript

t = 0.0148

where the answer is now given with the output from the lines for c and d suppressed
because of the semicolons on the end of the appropriate lines.

3.3. Commenting code. The text in a script file is a form of computer ”code”
and well written code should be easy to read and as easy to understand as is
possible. It certainly helps if you make sensible variable names, but an essential
part of making your code easy to understand is including comments that are
actually ignored by the computer when the code runs but which explain in words
what the other lines are for. In MATLAB anything written to the right hand side
of a percentage sign ”%” is ignored by the computer when the script is run. For
instance try changing the contents of myscript.m to read:

%Clear all variables that have been stored before:

clear

%Store the speed of sound (measured in m/s) in a variable called c:

c = 340;

%Calculate the distance in meters using Pythagorus’s Theorem and

%store this in a variable called d:

d = sqrt(2.8^2 + 4.2^2);

%Calculate the time taken for sound to travel distance d and store

%this in a variable called t and display the results on the screen:

t = d/c

Typing myscript into the command line will now give exactly the same answer:

>> myscript

t = 0.0148

but the code is now much easier for anyone to interpret.



10 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

4. Using sin, cos and tan, the built in functions for trigonometry

Trigonometry in MATLAB is done by typing sin, cos or tan as appropriate
followed by angle values contained by a pair of brackets. The calculations are
all performed assuming radians (rather than degrees) so that a full rotation is 2π
radians. In MATLAB we can also access the value of π simply by typing ”pi”.Try
the following examples:

>> sin(0)

ans = 0

>> sin(pi/4)

ans = 0.7071

>> sin(pi/2)

ans = 1

>> cos(0)

ans = 1

>> cos(pi/2)

ans = 6.1232e-17

>> cos(pi)

ans = -1

>> tan(pi/4)

ans = 1.0000

Note in particular that the exact answer for cos(π/2) is zero. Why then is MAT-
LAB showing a value other than zero? The answer is that MATLAB is designed
to do calculations numerically. There is a finite number of decimal points in the
approximation of the value of π and a finite number of accurate decimal points
in calculating the cosine function. The value of 6.1232e-17 (or 6.1232 × 10−17)
corresponds to the typical accuracy that MATLAB is working to. If MATLAB
was prioritised to do symbolic computations instead of numerical computations
then it could get the exact answer, but in practice tiny rounding errors like this
are seldom a problem.

4.1. Example: Diffraction for stereo loudspeakers. As an example of using
trigonometric calculations inside a script, consider two loudspeakers in a stereo
system are separated by a distance of L. Let’s assume that a listener very far away
from these speakers (in comparison to the distance between the two speakers) and
is off to one side so that the sound from the speakers arrives out of phase. The
distance between the listener and the two speakers will have a length difference of:

(2) d = L sin(θ)

where θ is the angular position of the listener (in radians) with respect to the
line of equal distance from the speakers (which is perpendicular to a line drawn
between the speakers). Create a script, starting with the clear command, followed
by definitions of the variables for the distance between the source (in metres) of



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 11

d = 1.1 and an angular position of listener (in radians) of θ = pi/4 as well as the
speed of sound (in m/s) of c = 340 to calculate the difference in the time taken
for sound to travel from the two loudspeakers to a distant listener.

Creating a script for this involves both equations (1) and (2), for example:

%Clear any old variables (in case we use them by accident):

clear

%Speed of sound

c = 340;

%Anglular position (radians) of listener from line

%of equal distance from speakers:

theta = pi/4;

%Distance between speakers (metres):

L = 1.1;

%Calculate difference in distance travelled (metres):

d = L*sin(theta);

%Time difference (seconds) calculated using difference in distance:

t = d/c

Exercises 4. 4.1). Create a MATLAB script which calculates the distance be-
tween the loudspeakers if a distant listener is at an angular position of θ = π/8
and the time difference between the loudspeakers is t = 1 millisecond.

5. Vectors

We have seen how variables are powerful containers for numerical values MAT-
LAB. Experimental data, however, often comes in the form of lists of values,
whether these are data points for a graph or a sampled sound wave. In order to
store such information in MATLAB we need to use vectors. We can define a vector
in MATLAB using square brackets and commas. As an example, lets manually
type in a vector consisting of a ramp of values from 0 to 1 in steps of 0.1 and store
it as x as follows:

>> x = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

x =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

We can then use the letter x access any of the values stored in the vector using
ordinary brackets as follows:

>> x(1)

ans = 0

>> x(2)

ans = 0.1000



12 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

>> x(7)

ans = 0.6000

>> x(11)

ans = 1

Note that we are referring to the first entry in x as entry number 1 and this has a
value of 0.

5.1. Guitar string fundamental mode shape. The simplest form of vibration
for a guitar string has a standing wave shape consisting of half a period of a sine
wave. This is known as the fundamental mode of vibration for the string and the
shape can be approximated using:

(3) y = sin(πx)

where x is a vector with values between 0 to 1. We will plot the shape of this
vibration as follows:

>> y = sin(pi*x)

y =

Columns 1 through 7

0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511

Columns 8 through 11

0.8090 0.5878 0.3090 0.0000

>> plot(x,y)

I have assumed here that we still have the vector for x created in the previous
section and if this has been done correctly a plot showing an arch should have
popped up in the screen. Most functions in MATLAB will return a vector y with
the same size as the input x and sin does indeed behave in this way. The arch
will have a slightly rough appearance due to the fact that there are only 11 data
points used.

5.2. Using the colon character for specifying ranges within vectors. The
plot we produced in section 5.1 would be smoother, and more accurate, if we use
a larger number of data points. It would be tedious to make a vector containing,
say, 100 terms by manual typing. Instead we want to use the colon character ”:”
to do the job of creating a vector of an arithmetic series for us. Try typing the
following:

>> 1:10

ans =

1 2 3 4 5 6 7 8 9 10

This is an example of how the notation a:b creates a vector going from a to b in
steps of 1. If we include an extra colon character then we can specify the step size
for a more general arithmetic series. Try the following:



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 13

>> 1:2:10

ans =

1 3 5 7 9

We have specified a starting point of 1, a step size of 2 and the range and a
maximum value of 10. The last value in the vector is actually 9 because 11 would
the next value in the series and this would exceed the maximum value.

If we want to create the vector x defined in section 5 using this notation it could
be done by specifying a starting value of 0, a step size of 0.1 and a maximum value
of 1 as follows:

>> x = 0:0.1:1

x =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

To increase the number of points in the range, or ”resolution”, we could specify a
smaller step size, say of a hundredth instead of a tenth. This is done in the next
line, with a semicolon character at the end of the line so that the long vector isn’t
shown on the screen:

>> x = 0:0.01:1;

Now if we type in the following to recreate the plot from section 5.1, but with
better resolution:

>> y = sin(pi*x);

>> plot(x,y)

Another use of the colon character is to look at a range within a vector. Say we
wish to show the first 6 values in x and y, this can be achieved using:

>> x(1:6)

ans =

0 0.0100 0.0200 0.0300 0.0400 0.0500

>> y(1:6)

ans =

0 0.0314 0.0628 0.0941 0.1253 0.1564

It is interesting to note that the first values in y = sin(πx) are approximately equal
to πx:

>> pi*x(1:6)

ans =

0 0.0314 0.0628 0.0942 0.1257 0.1571



14 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

6. Mode shapes for guitar string harmonics

There are a whole series of sinusoidal standing wave shapes possible on a guitar
string. Physically we are assuming that the guitar string is fixed at both ends.
This is known as an ”ideal string” because it is an idealisation. Real strings
will always move their supports a little, but the ideal string is a very useful first
approximation. The mode shapes are all sinusoidal and all share a value of 0 at
both ends of the string so that the shape is given by:

(4) y = sin(mπx)

where m can be any integer (i.e. m = 1, 2, 3, ...) and is known as the mode number.
We can plot the mode shape for m = 2 using the code:

>> x = 0:0.01:1;

>> m = 2;

>> y = sin(m*pi*x);

>> plot(x,y)

If you don’t see a graph popping up at this point it is possible that the graph
might be hidden behind other windows. If this is the case then try typing the
text ”shg” (without the quotes) into the command line, followed by enter, to force
the graph to be shown. We can also plot more than one mode shape on the same
graph. This can be done by using a list of vectors in the plot command as follows:

>> x = 0:0.01:1;

>> m = 1;

>> y_1 = sin(m*pi*x);

>> m = 2;

>> y_2 = sin(m*pi*x);

>> plot(x,y_1,x,y_2)

>> shg

Note that we have redefined the value of m here and used vector names y 1 and
y 2. In general we can give a variable or vector a name with continuous text of any
length as long as it doesn’t feature a number as the first character. It is best to give
variables names which make the code easy to understand. This may encourage
long variable or vector names. Try to keep names to a maximum length of five
characters or so because long names can lead to problems with spelling mistakes.

Exercises 5. 5.1). Create a script to plot the shape given in equation (4) of the
mode m = 3.

5.2). The mode shapes for velocity standing waves in a cylinder may be approx-
imated by the equation:

(5) y = cos(mπx)

Create a script to plots this shape of the mode m = 5.



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 15

5.3). Create a script to plots these shapes for the modes m = 1, m = 2 and
m = 3 all on the same graph.

5.4). Create a script to plots the mode shape for m = 1 with different spacings
for the x range (for instance by defining xlow = 0:0.1:1; and xhigh = 0:0.01:1;).

7. Row vectors, column vectors, and matrices

So far we have looked at row vectors (which consist as a horizontal list of num-
bers). It is also possible to make column vectors which feature a list of numbers
stacked on top of each other, and grids of numbers. A two dimension grid of num-
bers is called a matrix (the plural of which is matrices). In order to make a column
vector manually we use the square brackets as before, but use the semicolon instead
of the comma between each entry as follows:

>> xcol = [0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1]

xcol =

0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

The way to remember this is to think of the semicolon character as meaning ”new
line” whereas the comma character means ”carry on with the same line”. If we
have a column and want to change it to a row then we can use the transpose
command as follows:

>> transpose(xcol)

ans =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

Plotting works the same way for column vectors and row vectors in MATLAB.
You can create a matrix manually in MATLAB using a combination of commas

and semicolons as follows:

>> A = [1, 2, 3; 4, 5, 6]

A =

1 2 3



16 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

4 5 6

It is conventional to use capitals for matrices. Note that typing ”a” is will not get
you the contents of ”A” (i.e. MATLAB is case-sensitive). You can also make a
matrix using multiple vectors within square brackets, as long as the vectors are
the same length. For instance we can make a matrix, Y, consisting of two row
vectors (y 1 and y 2) using:

>> x = 0:0.01:1;

>> m = 1;

>> y_1 = sin(m*pi*x);

>> m = 2;

>> y_2 = sin(m*pi*x);

>> Y = [transpose(y_1), transpose(y_2)];

>> plot(x,Y)

>> shg

Here we have transposed the row vectors to make column vectors and put them
alongside one another using the comma. Note that the plot command in MATLAB
plots each column in a vector with a different colour, so the plot should look the
same as the one produced in section 6.

Ranges can be selected in a similar way to vectors. To show the first 6 rows of
the two columns in Y we can type:

>> Y(1:6,1:2)

ans =

0 0

0.0314 0.0628

0.0628 0.1253

0.0941 0.1874

0.1253 0.2487

0.1564 0.3090

We can check the size or dimension of a matrix, vector or variable using the size
command as follows:

>> size(m)

ans =

1 1

>> size(y_1)

ans =

1 101

>> size(y_2)

ans =

1 101

>> size(transpose(y_1))

ans =



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 17

101 1

>> size(Y)

ans =

101 2

The size command thus returns a vector whose first entry is the vertical height of
the matrix (or number of rows) and whose second entry is the horizontal width
of the matrix (or number of columns) so that Y has dimensionality 101 × 2 in
this case. Note that vectors can be though of as matrices with a size of one along
one dimension and variables (like m = 2) can be thought of as matrices with
dimensionality 1 × 1.

Exercises 7. 7.1). Create a script to plot a matrix containing the shapes for the
guitar string modes m = 1, 2, 3, 4 and 5 on the same graph.

8. Frequency

You will notice that the different standing waves mode shapes on a guitar string
have different wavelengths. Next we will discuss the concept of frequency in order
to work towards constructing a wave which follows a sine wave profile over time
which we can the listen to. The frequency of a wave is defined as the number
of cycles per second for a wave, and we will set this equal to a variable called f .
Initially we will try 440 samples per second, and this is expressed in scientific units
as 440 Hz.

If we have a frequency (or number of cycles per second) then we can work out
the time taken for a single cycle, known as the period time using the equation:

(6) T =
1

f

In the case of a 440 Hz vibration the period time will be:

>> f = 440;

>> T = 1/f

T = 0.0023

so one cycle of a sine wave at 440 Hz will take 0.0023 seconds, or 2.3 milliseconds.

8.1. Sampling frequency. In order to create a sound on a computer we need to
first set a number of samples per second for approximating the wave shape and
put this into a variable called fs. Initially we will use 44100 samples per second
which can also be expressed as 44100 Hz or 44.1 kHz. This is the standard sample
rate for CD quality audio.

We can then compute the time between samples using equation (6) which will
be ts = 1/fs. Try checking this value in the command line as follows:

>> fs = 44100;

>> ts = 1/fs

ts = 2.2676e-05



18 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

8.2. Making a sine wave plot. The total time duration of our sine wave can be
defined as one second and stored in a variable called t dur. We will initially set
this equal to the period time of the wave, so that one cycle will fit into our time
duration. Calculating the total number of samples in the sound is then a matter
of dividing the total time duration by the number of seconds between each sample.
As an example, in 1/440 of a second the number of samples, N , will be calculated
as follows:

>> fs = 44100;

>> t_dur = 1/440

t_dur = 0.0023

>> N = t_dur/ts

N = 100.2273

The should be just over 100 samples in one cycle of a sine wave of frequency 440
Hz at a sample rate of 44100 Hz. It doesn’t make any sense to have a fraction of
a sample on the end so we have to round the answer to the nearest integer using
the ”round” function which is built in to MALTAB:

>> N = round(t_dur/ts)

N = 100

Following this we create a vector of N time points. The vector of time points
should have a first value of zero, a second value of ts, a third sample of 2ts and
so on, so the Nth sample will have a value of (N − 1)ts. This can be achieved by
first making a vector of N integers, then multiplying by the sampling period.

>> fs = 44100;

>> ts = 1/fs;

>> n = [0:N-1];

>> t = ts*n;

Checking the first 6 values in the time vector should now give:

>> t(1:6)

ans =

1.0e-03 *

0 0.0227 0.0454 0.0680 0.0907 0.1134

Now we can make a vector containing the sine wave of frequency f and plot the
results against time as follows:

>> p = sin(2*pi*f*t);

>> plot(t,p)

>> shg

8.3. Making a sine wave sound. Making a sound file of the sine wave vector,
p, can be done using the built in ”wavwrite” function. This function interprets
columns of numbers as audio signals. In order to make our row vector sine wave



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 19

into a column we must use the transpose command, replacing p with the column
vector version as follows:

>> p = transpose(p);

Next we write the column vector using the wavwrite function:

>> wavwrite(p, fs, ’mysinewave.wav’)

Make sure you do include the single quotation marks this time when you type
in this command. Now type ”ls” (without quotes) into the command line to list
the contents of the directory you are in and you should see mysinewave.wav is
one of the files present. This is a wav file; an uncompressed sound file that can
be played back in any audio software. Note that we are making files which have
the potential to sound piercing. Turn down the volume on your audio equipment
or remove your headphones before playing sounds for the first time to prevent
unpleasant experiences involving loud, piercing sounds causing ringing in the ears
(tinnitus) or hearing damage.

Try opening the file (using the Finder if you are on Mac or using Start >
Documents on Windows, then double clicking on the file). You should hear a very
short sound. While we set a frequency of 440 Hz, the duration was so short that
the pitch will not be clear. If we want to hear a clear pitch we must do this process
with longer duration (say t dur = 1 for one second duration).

Exercises 8. 8.1). Make a script to create a two second sine wave of frequency
110 Hz and store it in a wav file.

8.2). Make a script to create a one second sine wave of frequency 220 Hz and
store it in a wav file (with a different name).

8.3). Make a script to create sine wave of frequency 330 Hz that lasts for half a
second and store it in a wav file (with a different name again).

8.4). Have a listen to the three files you have created above. The 220 Hz sine
wave should sound higher in pitch than the 110 Hz sine wave. This frequency
ratio of 2:1 corresponds to a difference in perceived pitch which is known as an
”octave”. The 330 Hz sound will sound higher again. This time the ratio of 3:2
with the 220 Hz will produce a pitch difference known as a ”perfect fifth”.

8.4. Making a function. We have created several very similar scripts now to do
very similar jobs but with slightly different input definitions (for frequency and
duration in this case). It is often useful to create a single function which works for
different input values. For instance we can create a MATLAB function to create
a sine wave of a particular sample rate, duration and frequency by creating a file
with the name mysine.m in a text editor and typing the following code inside it:

function [p, t] = mysine(fs, f, t_dur)

%fs is the sample rate (Hz)

%f is the frequency of the sine wave (Hz)

%t_dur is the duration of the sound (seconds)



20 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

%p is the vector of the sine wave

%t is the vector of times

%ts is the sampling period (seconds):

ts = 1/fs;

%N is the number of samples in time duration:

N = round(t_dur/ts);

%n is a vector of integers with N entries:

n = [0:N-1];

%t is the vector of times:

t = ts*n;

%p is the vector of the sine wave:

p = sin(2*pi*f*t);

%Transpose p to make it a column vector so wavwrite can be used later:

p = transpose(p);

The start of the code above begins with the word ”function” and this tells
MATLAB that it is to behave like a function rather than a script. MATLAB
functions have inputs inside brackets (fs, f and t dur in this case) and output
arguments (p and t in this case) and you cannot access any of the variables we
may have stored in memory so far from inside a function unless you include them
in the list of inputs (as the variables we have created so far are what are known as
local variables in that they only exist in the command line or in scripts). Likewise
any variables created inside the function can’t be accessed from the command line
after the function has been used unless they are included in the list of outputs.

Next type the following into the command line:

>> fs = 44100;

>> f = 440;

>> t_dur = 1/440;

>> [p, t] = mysine(fs, f, t_dur);

>> plot(t, p)

>> shg

If we have saved the file mysine.m in the directory we are in correctly then we
should see one period of a sine wave on the screen. Note that the input variables
in the function mysine can be changed to whatever we want, such as to create a
wav file contain a one second duration sine wave with sample rate 44100 Hz and
frequency 880 Hz we would type:

>> fs = 44100;

>> f = 880;

>> t_dur = 2;

>> [p,t] = mysine(fs, f, t_dur);

>> wavwrite(p, fs, ’mysine880.wav’)



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 21

8.5. Clipping. You may have seen a warning about the file being ”clipped” in
completing section 8.4 above. Sine waves have a minimum and maximum of pre-
cisely -1 and 1 but the wav file format can only store values between roughly -1 and
1 with a finite precision (or ”bit resolution”) and the slight discrepancy produces
the warning. Assuming the file mysine.m has been created successfully using the
code above then we can check the minimum and maximum of the vector, p, as
follows:

>> fs = 44100;

>> f = 880;

>> t_dur = 2;

>> [p,t] = mysine(fs, f, t_dur);

>> min(p)

ans = -1.0000

>> max(p)

ans = 1.0000

As the maximum amplitude is indeed 1 there won’t be audible effects due to the
clipping.

If on the other hand we create a waveform and multiply by a factor of, say,
4 before writing the wav file, then we should hear audible differences. Try the
following:

>> fs = 44100;

>> f = 220;

>> t_dur = 1;

>> [p, t] = mysine(fs, f, t_dur);

>> wavwrite(p, fs, ’mysine220.wav’)

>> wavwrite(4*p, fs, ’myclipped220.wav’)

This time the wave 4*p is producing an input with a range of -4 and 4 meaning that
the wav file format (which can only store numbers in the range between -1 and 1)
will ”clip” the top and bottom of the waveforms, causing a sort of distortion called
”clipping”. This is similar to the concept of ”saturation” in amplifiers where the
output ”clips” or ”saturates” when the desired output exceeds the operating range
of the amplifier (which in turn depends on the amplifier power supply). Have a
listen to the two files you have produced. You will notice that, as well as sounding
louder, the file myclipped220.wav has a brighter tone quality while retaining the
same pitch.

We can read the contents of the wav file back into MATLAB as a variable called
p4 using the ”wavread” function, and this can then be compared to 4*p using a
plot command:

>> [p4, fs] = wavread(’myclipped220.wav’);

>> plot(t, 4*p, t, p4)

>> shg



22 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

The plot shows how the wav file has been clipped outside the range -1 and +1 and
this is especially clear if we limit the x axis range to just show one period using
the ”xlim” command:

>> xlim([0, 1/f]);

>> shg

8.6. Using the fft command for Fourier transforms. We can analyse the
frequency spectrum of sounds in MATLAB using Fourier transforms with the fft
command. Assuming that the wav files have been created correctly from section
8.5 then a plot of the frequency spectrum should be produced using the following
code:

>> [p, fs] = wavread(’mysine220.wav’);

>> N = length(p);

>> n = [0:N-1];

>> fvec = n*fs/N;

>> pfft = fft(p);

>> plot(fvec,abs(pfft))

Here we have used three new functions: the ”fft” command which computes a vec-
tor containing the frequency spectrum of the input vector, the ”length” command
which returns the number of entries in the input vector, and the ”abs” command
which returns the magnitude (or absolute value) of a complex number and this
is necessary because the ”fft” command returns complex numbers. Note that the
left-hand side of the resulting plot shows one peak and this corresponds to a fre-
quency of 220 Hz. This indicates that the sound stored in the wav file was indeed
a sine wave at 220 Hz. The right-hand side of the plot shows a mirror image of the
left-hand side because frequencies greater than half of the sample rate cannot be
measured uniquely. We can label the axes using the ”xlabel” and ”ylabel” com-
mands and limit the range of the plot to show the frequency peak in more detail
as follows:

>> xlabel(’Frequency (Hz)’)

>> ylabel(’Amplitude’)

>> xlim([200, 240])

Next we can try plotting the frequency spectrum of the clipped file as follows:

>> [p4, fs] = wavread(’myclipped220.wav’);

>> p4fft = fft(p4);

>> plot(fvec,abs(p4fft))

>> xlim([0, 2000])

This time we can see multiple peaks and these are at 220 Hz, 3 × 220 Hz = 660
Hz, 5 × 220 Hz = 1100 Hz, 7 × 220 = 1540 Hz and 9 × 220 Hz = 1980 Hz. These
peaks are called ”odd harmonics” in that they are odd integers multiplied by the
fundamental frequency of 220 Hz. The clipping generated by the wavwrite process



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 23

is an example of what is called harmonic distortion. This creates a change in the
tone quality of the sound without changing the perceived pitch. Hi-fi loudspeakers
and amplifiers are designed to minimise the distortion of waveforms, but some
distortion will always occur and their specification charts typically show the total
harmonic distortion (THD) as a percentage. Guitar amplifiers and distortion effect
units on the other hand are designed to produce larger amounts of harmonic dis-
tortion. If distortion is used subtlety it may add ”warmth” to the sound produced
(as is often the case in blues guitar playing), and if larger amounts of harmonic
distortion are produced the sound can be more aggressive (as is often the case in
heavy metal style guitar playing).

Exercises 8 continued. 8.5). Create a script in which you create a vector called
p containing a sine wave with frequency 330 Hz, duration 1 second and sample
rate 44100 Hz using the function ”mysine.m” described in section 8.4. Multiply
the resulting vector by a factor of 10 and save the result in a wav file. Listen to the
sound of the wav file and check that the sound is heavily distorted due to clipping
distortion. Plot the frequency spectrum of the wav file as shown in section 8.6.

8.6). Create a script in which you create a vector called p containing a sine
wave with frequency 330 Hz, duration 1 second and sample rate 44100 Hz as
above. Multiply the resulting vector by a factor of 2 and save the result in a wav
file. Check that the clipping distortion is more subtle in both the sound and when
you plot the frequency spectrum of the wav file. Hint: The harmonics should have
lower amplitudes in the frequency spectrum plot.

8.7). Create a script in which you create a vector called p containing a sine
wave with frequency 330 Hz, duration 1 second and sample rate 44100 Hz as
above. Apply processing using the formula:

p = 2*(p + 0.25);

Save the result in a wav file. Check that the clipping distortion features ”even
harmonics” at 2 × 330 = 660 Hz, 4 × 330 = 1320 Hz and so on (as well as the
”odd harmonics” seen in previous plots) in the frequency spectrum of the wav file.
Check that the sound has a different tone quality in comparison to the wav file
created in the previous exercise.

8.8). Create a script which reads in the wav files created in exercises 8.6) and
8.6), and then plot their frequency spectra on the same graph.

9. Wavelength

If a sine wave is produced in air, say by loudspeaker then the sound travels
away from the source as a travelling wave. There will be one period time T = 1/f
between one peak of the wave being produce and the next peak of the wave being
produced for a frequency of f . The first peak will have travelled a distance of

(7) λ = cT =
c

f



24 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

where c is the speed of wave propagation (and c ≈ 340 m/s is the speed of sound
in air). The value λ is called the wavelength of the wave. If, on the other hand,
we somehow know the wavelength of a sound we can work out the frequency using
a rearrangement of equation (7):

(8) f =
c

λ

9.1. Travelling waves, standing waves and reflection. So far we have en-
countered standing waves, such as those on a guitar string, and travelling waves,
such as the waves which travel from a source to a listener. The relationship be-
tween these two forms of sound are useful to study. When a sound wave collides
with wall it is reflected in a similar way to light being reflected from a mirror. The
wall doesn’t act as a perfect ”acoustic mirror” in that sound with low frequency
bends around objects due to a process called diffraction and different surfaces
absorb different frequencies to different extents.

Once a wave is reflected, we get two travelling waves on top of each other: one
going towards the wall and one going away from the wall. If the two waves have the
same amplitude then the result is alternating areas of constructive and destructive
interference. The wave vibrates in the areas of constructive interference while
appearing to not vibrate in the areas of destructive interference. This is a what
we mean by a standing wave. For the moment the main thing to note is that
the wavelength and frequency of both standing waves and travelling waves obey
equation (8) as standing waves are simply two travelling waves superimposed.

When a positive acoustic pressure bounces off a wall in a room then the reflection
will also have a positive pressure. We say that the wave is reflected in phase.

Consider waves on a string fixed at both ends. A travelling wave featuring an
upwards motion of the string hitting a fixed end will supply an upwards force
to the support which are fixing the end of the string. The string will receive an
equal and opposite force from the support (and this is an example of Newton’s
third law). The motion on the string will then show a downwards motion for the
reflected travelling wave. We say that the wave is reflected out of phase in this
case.

9.2. The frequencies of the modes of a string with fixed ends. As waves
are reflected out of phase from the ends, the standing wave shapes must be zero
at the ends. This is exactly what we saw in section 6. We will now consider the
wavelength of these modes, define the speed of wave propagation on a string and
calculate the frequency of vibration of the modes. If we define the string length as
L then the fundamental mode will feature half a wavelength so

(9) L =
λ1
2
, λ1 = 2L



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 25

where λ1 is the wavelength of the fundamental or m = 1 mode from equation (4).
If we consider the m = 2 mode from equation (4) we get

(10) L = λ2

and for m = 3:

(11) L =
3λ3
2
, λ3 =

2L

3

so there are m half wavelengths in the length L in general, giving a formula of for
the wavelength, λm of the mth mode on a string of:

(12) λm =
2L

m
,m = 1, 2, 3 . . .

If we know the speed of wave propagation on the string then we can now work
out the frequency of the mth mode on a string using equation (8). It is important
to note that the speed of wave propagation on a string is not the same things
as the speed of sound in air and depends on µ, the mass per unit length of the
string (measured in kg/m) and T , the tension of the string (measured in Newtons)
according to the formula:

(13) c =

√
T

µ

Now to give:

(14) fm =
mc

2L
,m = 1, 2, 3 . . .

The modes of vibration on a string are therefore ”harmonics” of frequency f1, 2f1,
3f1, 4f1 . . .

9.3. Waves in pipes. When a positive acoustic pressure bounces of the closed end
of a cylinder the wave is reflected in phase (i.e. with a positive acoustic pressure)
so that the closed end behaves in the same way as a wall in a room. If a travelling
waves arrives at the open end of the tube the opposite happens in that the wave
is, to a first approximation, reflected out of phase back down the cylinder. This
is, initially, rather a surprising statement. If we walk down a corridor and out of
an open door at the end then we do not experiencing a force sending us back in
the other direction upside-down!

Wave motion is strange and sometimes unintuitive. The fact that a positive
acoustic pressure is reflected from an open end as a negative acoustics pressure is
due to changes in the area that the pressure wave may occupy. Waves in a pipe
will reflect whenever the cross-section area changes, for instance. The reflection is
in phase if the cross-section decreases and the reflection is out of phase if the cross-
section increases. While this is very hard to understand, study of this phenomenon
in acoustics in strongly related to the subject of quantum mechanics where the



26 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

Schrödinger equation shows how very small particles behave in very strange, wave-
like manner. Electrons inside atoms behave in this way, occupying standing wave
states. The reason we find wave-like behaviour strange is because we are not small
enough! Acoustics is just one of the subjects that can help educate us.

9.4. Using a for loop to show travelling waves. We will now create a series
of plots so that travelling waves are displayed on the screen. Make a script file and
put the following code into it:

%Clear any old variables (in case we use them by accident):

clear

%Plotting updates per second (Hz):

fs = 25;

%Number of points in the plot along x axis:

Lx = 100;

%Frequency (Hz):

f = 0.5;

%Duration of movie (seconds):

t_dur = 5;

%Wavelength:

lambda = 2*Lx/5;

%Number of time points:

Nt = t_dur*fs;

%Spatial vector:

x = 0:Lx;

%Wavenumber (radians per sample):

k = 2*pi/lambda;

%Angular frequency (radians per second):

w = 2*pi*f;

%for loop:

for ind = 0:Nt-1

%Time now:

t = ind/fs;

%Travelling wave in forward direction:

pfor = sin(w*t - k*x);

%Do plot:

plot(x, pfor)

%Bring graph to top of the screen if necessary:

shg

%Delay for ts seconds so plot moves at (roughly) the correct speed:

pause(1/fs)



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 27

end

This script plots a travelling wave that travels to the right.

Exercises 9 continued. 9.1). Create a script to plot a travelling wave which
travels to the left. Hint: Use a positive sign inside the bracket as follows:

pback = sin(w*t + k*x);

9.2). Create a script to plot a travelling wave going to the right, a travelling
wave of the same frequency going to the left and the sum of the two, all on the
same graph. The sum of the two should be a standing wave.

9.3). Create a script to plot travelling waves and their sum when we have integer
number of quarter wavelengths within the plot window.

9.4). Create a script to plot a travelling waves and their sum when the backward
going wave has the opposite phase. Hint: The backward going wave should be
preceeded by a negative sign as follows:

pback = - sin(w*t + k*x);

10. Class, strings and measurements

Using MATLAB for measurements involves making a wav file with a test signal,
importing this into some audio software (such as Cockos REAPER) and then
playing the sound back using a loudspeaker while recording the sound that results
using a microphone. In this section we will try making sine waves at 125 Hz, 250
Hz, 500 Hz, 1000 Hz and 2000 Hz all with a duration of 1 second and a variety of
sample rates (44100 Hz, 96000 Hz and 192000 Hz). In order to do this is is helpful
to use the name of the file to store information on the sound. This can be done by
taking a script and altering the number on the lines beginning with f (where we
set the frequency) and also the line beginning with wavwrite (where we name the
file we are creating). It is much better to we are making have a working knowledge
of how MATLAB uses text so that we only have to change the line beginning with
f , and then use the variable f as part of the file name automatically.

Programming languages hold text in a different format to numbers as each
character in text needs to have its own independent digital code. Technically we
say that number and text are stored as different data ”class” with numbers usually
stored as members of the class ”double” (this just means that the computer uses
64 bits to store the number instead of the older ”single” precision storage which
uses 32 bits) while ”strings” of text are stored as vectors which are members of
the class ”char” (which is short for character).

In order to get MATLAB to use the variable name f within the name of the wav
file we need to convert the number stored in f from a double precision number
into a string of characters using the command num2str. Try typing:

>> f = 250;

>> num2str(f)



28 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

ans = 250

This may not look like it has achieved much at first inspection, but we can check
what class has been created using the command whos (which is different from the
command who in that it shows you information on the variables in long rather
than short form):

>> who

Your variables are:

ans f

>> whos

Name Size Bytes Class Attributes

ans 1x3 6 char

f 1x1 8 double

So we can see that the answer is a member of the class char and this means that it
can be used as part of a file name. We can use square brackets to contain a vector
with a combination of quotes and num2str commands separated by commas as
follows:

>> [’sine’,num2str(f),’.wav’]

ans = sine250.wav

Using this technique we write a wav file using the wavwrite command incorporating
the variables f and fs in the file name by editing the function we created in section
8.4 with the new bottom line in the following code:

function [p, t] = mysine(fs, f, t_dur)

%fs is the sample rate (Hz)

%f is the frequency of the sine wave (Hz)

%t_dur is the duration of the sound (seconds)

%p is the vector of the sine wave

%t is the vector of times

%ts is the sampling period (seconds):

ts = 1/fs;

%N is the number of samples in time duration:

N = round(t_dur/ts);

%n is a vector of integers with N entries:

n = [0:N-1];

%t is the vector of times:

t = ts*n;

%p is the vector of the sine wave:

p = sin(2*pi*f*t);

%Write wav file:

wavwrite(p,fs,[’mysine_’,num2str(f),’_’,num2str(fs),’.wav’])

Creating a wav file can then be achieved using:



INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012 29

mysine(44100, 250, 1);

resulting in a one second file called mysine 250 44100.wav with the sample rate
44100 Hz and containing a sine wave of frequency 250 Hz and so on. The great
flexibility here is that we can then simply change one number and the name of the
file that is created reflects this automatically.

Try creating a set of files containing one second sine waves at 125 Hz, 250 Hz,
500 Hz, 1000 Hz and 2000 Hz at sample rates of 441000 Hz, 96 kHz and 192 kHz.
Insert these files into audio software such as Cockos REAPER

11. Answers

Answers to Selected Exercises. 1.1). We need to work out the distance to the
castle and back:

>> 34+34

ans = 68

so d = 68 m and then work out the time using t = d/c which is:

>> 68/340

ans = 0.2000

so the time before we hear the echo is 0.2 s.
1.2). Rearranging equation (1) we get d = ct so:

>> 340*0.3

ans = 102

gives the answer as 102 m.
1.3). The time between echoes is:

>> 1/180

ans = 0.0056

so 0.0056 seconds or 5.6 milliseconds. The distance travelled by sound in between
each echo must be d = ct:

>> 340*0.0056

ans = 1.9040

so the distance between the walls must be half this (as the sound must travel to
the other wall and back to make each echo:

>> 1.9040/2

ans = 0.9520

so the distance between the walls is 0.9520 m or 95.2 cm.
1.4). Here the tape speed is c = 2.5 cm/s and the taken for echoes to appear is

t = d/c so using d = 5 cm we have:

>> 5/2.5

ans = 2



30 INTRODUCTION TO MATLAB c© JONATHAN A. KEMP 2012

so echoes appear after 2 seconds.
4.1). A suitable script would be:

%Clear any old variables (in case we use them by accident):

clear

%Speed of sound

c = 340;

%Anglular position (radians) of listener from line

%of equal distance from speakers:

theta = pi/8;

%Time difference (seconds):

t = 0.001;

%Distance difference (metres):

d = c*t;

%Distance between speakers (metres):

L = d/sin(theta)


	Introduction
	1. The Basics: MATLAB as a calculator 
	1.1. Example: Using the speed of sound
	Exercises 1
	1.2. Brackets
	1.3. Using sqrt, the built in function for square roots 

	2. Storing numbers: Variables
	3. Script files 
	3.1. Files and folders (or directories)
	3.2. Semicolons to prevent printing results on the screen
	3.3. Commenting code

	4. Using sin, cos and tan, the built in functions for trigonometry 
	4.1. Example: Diffraction for stereo loudspeakers
	Exercises 4

	5. Vectors 
	5.1. Guitar string fundamental mode shape
	5.2. Using the colon character for specifying ranges within vectors

	6. Mode shapes for guitar string harmonics 
	Exercises 5

	7. Row vectors, column vectors, and matrices 
	Exercises 7

	8. Frequency
	8.1. Sampling frequency
	8.2. Making a sine wave plot
	8.3. Making a sine wave sound
	Exercises 8
	8.4. Making a function
	8.5. Clipping
	8.6. Using the fft command for Fourier transforms
	Exercises 8 continued

	9. Wavelength 
	9.1. Travelling waves, standing waves and reflection
	9.2. The frequencies of the modes of a string with fixed ends
	9.3. Waves in pipes
	9.4. Using a for loop to show travelling waves
	Exercises 9 continued

	10. Class, strings and measurements
	11. Answers
	Answers to Selected Exercises


